Исследование уравнений и неравенств с параметром заключение. Методика формирования умений решать уравнения и неравенства с параметрами в курсе основной общеобразовательной школе. Линейные неравенства с параметром

Урок по элективному курсу

по теме: «Решение уравнений и неравенств с параметрами»

(Урок обобщения и повторения)

Цель: 1.Повторить и обобщить знания учащихся методов решения уравнений и неравенств с параметрами; закрепить умения применять знания при решении конкретных заданий; 2. Развивать логическое мышление; 3.Воспитывать внимание и аккуратность.

План урок: I. Организационный момент_________________________2 мин.

II. Актуализация опорных знаний:

  1. Повторение__________________________________3 мин.
  2. Устная работа________________________________3 мин.
  3. Работа по карточкам (во время 1 и 2)

III. Решение упражнений___________________________22 мин.

IY. Выполнение теста______________________________8 мин.

Y. Подведение итогов, постановка домашнего задания__2 мин.

Х о д у р о к а:

I. Организационный момент .

Учитель: - Здравствуйте, ребята. Приятно вас всех видеть, мы начинаем наш урок. Сегодня на уроке наша цель - повторить и отработать знания, умения и навыки, полученные на прошлых уроках при изучении данной темы.

II . Актуализация опорных знаний:

1) Повторение.

Учитель: - Итак, повторим.

Что называется линейным уравнением с параметрами?

Какие случаи мы рассматривали при решении таких уравнений?

Приведите примеры линейных уравнений с параметрами.

Приведите примеры линейных неравенств с параметрами.

2) Устная работа.

Задание: Приведите данное уравнение к линейному виду.

На доске:

а) 3а х – 1 =2 х ;

б) 2+5 х = 5а х ;

в) 2 х – 4 = а х + 1.

3) Работа по карточкам.

III . Решение упражнений.

Задание 1. Решить уравнение с параметром а.

3(ах + 1) + 1 = 2(а – х) + 1.

Задание выполняется на доске и в тетрадях.

Задание 2. При каком значении а, прямая у = 7ах + 9, проходит через

т. А(-3;2) ?

Задание выполняется самостоятельно у доски одним учеником. Остальные работают в тетрадях, затем сверяются с доской.

Физкульт. минутка.

Задание 3. При каком значении а, уравнение 3(ах – а) = х – 1 имеет

Бесконечно много решений?

Данное задание предлагается решить самостоятельно учащимся в тетрадях. Затем проверить ответы.

Задание 4. При каком значении параметра а , сумма корней уравнения

2х² + (4а² - 2)х – (а² + 1) = 0 равна 1?

Задание выполняется комментированием с места.

Задание 5. Решите неравенство с параметром р :

р(5х – 2)

Данное задание выполняется у доски и в тетрадях.

IY. Выполнение теста.

Учащимся выдаются индивидуальные листы с заданиями:

1) Является ли уравнение 6(ах + 1) + а = 3(а – х) + 7 линейным?

А) да; б) нет; в) можно привести к линейному

2) Уравнение (2ах + 1)а = 5а – 1 приведено к виду линейного уравнения

А) нет; б) да;

3) При каком значении параметра а прямая у = ах – 3 проходит через

Т. А(-2;9) ?

А) а = 1/6; б) а = 1/2; в) а = -6; г) а = 6.

4) При каком а уравнение 2ах + 1 = х имеет корень, равный -1?

а) а = -1; б) а = 0; в) а = 1; г) а = 1/2.

5) Если у квадратного уравнения ах² + вх + с = 0 Д ах² + вх + с >0 зависит от

А) значения в ; б) значения а ; в) значения -в/а ;

г) не имеет решений.

О т в е т ы к т е с т у: в; а; в; в; б.

YII. Подведение итогов урока. Постановка домашнего задания.

Учитель: - Сегодня на уроке мы повторили и закрепили знания, полученные на прошлых уроках, отработали необходимые умения при выполнении различных заданий. Я думаю, что вы поработали хорошо, молодцы.

Кроме поставленных за урок оценок, можно оценить работу на уроке еще ряда учащихся.

Учитель : - Запишите домашнее задание:

На доске:

Решить неравенство: х² - 2ах + 4 > 0.

Урок окончен.


Муниципальное автономное общеобразовательное учереждение «Лицей №1» г. Новтроицка

Исследовательская работа

Методы решения уравнений и неравенств с параметром

Математическое моделирование

Выполнил:

ученик 11 А класса МОАУ

«Лицей №1»

Руководитель:

учитель высшей

Новотроицк

Введение. 3

Параметр. 5

Методы решения тригонометрических уравнений с параметром. 9

Методы решения показательных и логарифмических уравнений и неравенств с параметром. 17

Методы решения систем уравнений и неравенств. 22

Заключение. 31

Список используемой литературы.. 32

Введение

Уравнения с параметром вызывают большие затруднения у учащихся 9-11 классов. Это связано с тем, что решение таких уравнений требует не только знания свойств функций и уравнений, умения выполнять алгебраические преобразования, но также высокой логической культуры и техники исследования.

Трудности при изучении данного вида уравнений связаны со следующими их особенностями:

· обилие формул и методов, используемых при решении уравнений данного вида;

· возможность решения одного и того же уравнения, содержащего параметр, различными способами.

Актуальность темы обуславливается недостаточным содержанием задач по данной теме в учебнике «Алгебра 11 класс ».

Важность данной темы определяется необходимостью уметь решать такие уравнения с параметрами как и при сдачи Единого Государственного экзамена, так и при вступительных экзаменах в высшие учебные заведения.

Объект исследования : задачи с параметрами.

Цель данной работы :

Выявить, обосновать и наглядно показать способы решения всех типов уравнений с параметрами;

Решить уравнения с параметрами;

Углубить теоретические знания по решению уравнений с параметрами;

Для достижения поставленной цели необходимо решить следующие задачи:

1. Дать определения понятиям уравнение с параметрами;

2. Показать способы решения уравнений с параметрами.

Достоинство моей работы заключается в следующем: указываются алгоритмы решения уравнений с параметрами; задачи часто встречаются на различных экзаменах и олимпиадах. Работа поможет ученикам сдать Единый Государственный Экзамен.

Мои действия:

1. Подобрать и изучить литературу;

2. Решить подобранные задачи;

Параметр

Имеется несколько определений параметра:

- Параметр – это величина, входящая в формулы и выражения, значение которой является постоянным в пределах рассматриваемой задачи, но в другой задаче меняет свои значения (, - «Толковый словарь математических терминов»).

- Переменныеa , b , c , …, k , которые при решении уравнения или неравенства считаются постоянными, называются параметрами, а само уравнение (неравенство) называется уравнением (неравенством), содержащим параметры (– «Репетитор по математике», Ростов-на-Дону «Феникс» 1997).

Решение большинства уравнений, содержащих параметр, сводится к квадратным уравнениям с параметром . Следовательно, чтобы научиться решать показательные, логарифмические, тригонометрические уравнения и системы уравнений с параметром, нужно сначала приобрести навыки решения квадратных уравнений с параметром .

Уравнение вида ax 2 + bx + c =0 , где х – неизвестная, a, b, c – выражения, зависящие только от параметров, а¹0, называется квадратным уравнением относительно х. Допустимыми будем считать только те значения параметров, при которых a, b, c действительны.

Контрольные значения параметра

Для решения квадратных уравнений с параметром необходимо находить контрольные значения параметра.

Контрольные значения параметра – те значения, при которых обращается в 0:

Старший коэффициент в уравнении или в неравенстве;

Знаменатели в дроби;

Дискриминант квадратного двучлена.

Общая схема решения уравнений, приводимых к квадратным уравнениям с параметром.

Общая схема решения уравнений, приводимых к квадратным уравнениям с параметром:

1. Указать и исключить все значения параметра и переменной, при которых уравнение теряет смысл.

2. Умножить обе части уравнения на общий знаменатель, не равный нулю.

3. Преобразовать уравнение-следствие к виду https://pandia.ru/text/80/147/images/image002_13.png" width="128" height="24 src="> - действительные числа или функции от параметра.

4. Решить полученное уравнение, рассмотрев случаи:

а) ; б) https://pandia.ru/text/80/147/images/image005_6.png" width="19" height="27">.png" width="21" height="27">.png" height="75">х=2b+1

Так как х должен лежать на промежутке от 1 до 6, то:
1) 1<2b+1<6

2) 1<2b – 1<6

https://pandia.ru/text/80/147/images/image009_4.png" width="47" height="41 src=">=2b+1

1) 1<2b+1<6

2) 1<2b – 1<6

https://pandia.ru/text/80/147/images/image010_2.png" width="18 height=98" height="98">

у(1)>0 у=1-4b+4b2– 1>0

у(6)> 0 у=36-24b+4b2– 1>0

хвÎ(1; 6) 1<-<6

bÎ(-∞; 0) È (1; +∞).

2) 4b2-24b+35>0

D=576 – 560=16=42>0

b1=https://pandia.ru/text/80/147/images/image016_2.png" width="47" height="41 src=">=2,5 bÎ(0,5; 3)

bÎ(-∞;2,5)È(3,5;+∞)
bÎ(1; 2,5)

Ответ: корни уравнения х2-4bх+4b2–1=0 лежат на промежутке от

ФБГОУ ВПО «Мордовский государственный

педагогический институт имени М.Е. евсевьева»

ФИЗИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ

Кафедра математики и методики обучения математики

КУРСОВАЯ РАБОТА

Методика формирования умений решать уравнения и неравенства с параметрами в курсе основной общеобразовательной школе

студентка группы МДМ-110 А.И. Зимина

Специальность: 050201.65 «Математика» с дополнительной специальностью 050202 «Информатика»

Саранск 2014

Введение

Теоретические основы линий уравнений и неравенств в школьном курсе математики

1 Виды уравнений в школьном курсе математики

2 Виды неравенств в школьном курсе математики

3 Особенности решения уравнений с параметрами

4 Особенности решения неравенств с параметрами

Заключение

Список используемой литературы

Введение

На современном этапе развития школьного образования становятся приоритетными развивающие цели обучения. В связи с этим при изучении математики особую значимость приобретает организованное обучение приемам мышления, рационального выполнения учебной деятельности, что исключительно важно при усвоении трудных тем и решении сложных задач таких, как уравнения и неравенства с параметрами. Именно недостаточная сформированность приемов учебной деятельности является одной из причин того, что большинство учащихся совершает ошибки или испытывает затруднения при решении даже несложных задач такого рода.

Изучением задач с параметрами, их роли в обучении, понятий, связанных с их решением, в разные годы занимались М.И. Башмаков, Г.В. Дорофеев, М.И. Зайкин, Т.А. Иванова, Г.Л. Луканкин, Я.Л. Крейнин, В.К. Марков, А.Г. Мордкович, Н.Х. Розов, Г.И. Саранцев, Р.А. Утеева и др. Многие из них подчеркивали важность обучения школьников приемам решения уравнений и неравенств с параметрами прежде всего в связи с необходимостью подготовки учащихся к выполнению работ итоговой аттестации и различного рода конкурсных испытаний. При этом большинство авторов характеризует задачи с параметрами как исследовательские задачи, требующие высокой логической культуры и техники исследования; как наиболее сложные в логическом и семантическом плане вопросы элементарной математики. В этой связи В.В. Вересова, В.И. Горбачев, Н.С. Денисова, В.Н. Литвиненко, А.Г. Мордкович, Т.Н. Полякова, Г.А. Ястребинецкий и др. справедливо замечают, что для описания процесса их решения необходимо использовать систему понятий, математических утверждений и фактов, определяемую фундаментальными математическими идеями; некоторые из них предпринимают попытки к ее разработке. Однако в многочисленных пособиях и руководствах справочного и методического характера для поступающих в вузы рассматриваются лишь частные приемы решения конкретных уравнений и неравенств с параметрами, чаще всего в рамках широкого спектра конкурсных заданий.

Уравнения и неравенства, содержащие параметр, не изучаются систематически в школьном курсе математики, а рассматриваются лишь отдельные их простейшие примеры. Поэтому методы и приемы решения таких задач большинству учащихся не известны.

Актуальность данной темы состоит в том, что анализируя экзаменационные работы по математике, приходишь к выводу, что за курс математики в общеобразовательной школе учащимися должны быть отработаны умения решения задач с параметрами. Кроме непосредственной подготовки учащихся к экзаменам по данному разделу математики (решение задач с параметрами), главная его задача - поднять на более высокий уровень изучение математики в школе, следующий за развитием умений и навыков решения определенного набора стандартных задач.

Объект исследования: процесс формирования умений решать уравнений и неравенств с параметрами в школьном курсе метематике основной школы.

Предмет исследования: уравнения и неравенства с параметрами.

Цель исследования: выделить виды, методы решения уравнений и неравенств с параметрами в школьном курсе математике.

Для достижения поставленной цели необходимо было решить следующие задачи:

) Изучить и проанализировать специальную литературу по проблеме исследования;

)Рассмотреть роль уравнений и неравенств в школьном курсе математике;

1. Теоретические основы линий уравнений и неравенств в школьном курсе математики

Ввиду важности и обширности материала, связанного с понятием уравнения, его изучение в современной методике математики организовано в содержательно-методическую линию уравнений и неравенств. Здесь рассматриваются вопросы формирования понятий уравнения и неравенства, общих и частных методов их решения, взаимосвязи изучения уравнений и неравенств с числовой, функциональной и другими линиями школьного курса математики.

Выделенным областям возникновения и функционирования понятия уравнения в алгебре соответствуют три основных направления развертывания линии уравнений и неравенств в школьном курсе математики.

а) Прикладная направленность линии уравнений и неравенств раскрывается главным образом при изучении алгебраического метода решения текстовых задач. Этот метод широко применяется в школьной математике, поскольку он связан с обучением приемам, используемым в приложениях математики.

В настоящее время ведущее положение в приложениях математики занимает математическое моделирование. Используя это понятие, можно сказать, что прикладное значение уравнений, неравенств и их систем определяется тем, что они являются основной частью математических средств, используемых в математическом моделировании.

б) Теоретико-математическая направленность линии уравнений и неравенств раскрывается в двух аспектах: во-первых, в изучении наиболее важных классов уравнений, неравенств и их систем и, во-вторых, в изучении обобщенных понятий и методов, относящихся к линии в целом. Оба эти аспекта необходимы в курсе школьной математики. Основные классы уравнений и неравенств связаны с простейшими и одновременно наиболее важными математическими моделями. Использование обобщенных понятий и методов позволяет логически упорядочить изучение линии в целом, поскольку они описывают то общее, что имеется в процедурах и приемах решения, относящихся к отдельным классам уравнений, неравенств, систем. В свою очередь, эти общие понятия и методы опираются на основные логические понятия: неизвестное, равенство, равносильность, логическое следование, которые также должны быть раскрыты в линии уравнений и неравенств.

в) Для линии уравнений и неравенств характерна направленность на установление связей с остальным содержанием курса математики. Эта линия тесно связана с числовой линией. Основная идея, реализуемая в процессе установления взаимосвязи этих линий, - это идея последовательного расширения числовой системы. Все числовые области, рассматриваемые в школьной алгебре и началах анализа, за исключением области всех действительных чисел, возникают в связи с решением каких-либо уравнений, неравенств, систем. Например, числовые промежутки выделяются неравенствами или системами неравенств. Области иррациональных и логарифмических выражений связаны соответственно с уравнениями (k-натуральное число, большее 1.

Связь линии уравнений и неравенств с числовой линией двусторонняя. Приведенные примеры показывают влияние уравнений и неравенств на развертывание числовой системы. Обратное влияние проявляется в том, что каждая вновь введенная числовая область расширяет возможности составления и решения различных уравнений и неравенств.

Линия уравнений и неравенств тесно связана также и с функциональной линией. Одна из важнейших таких связей приложения методов, разрабатываемых в линии уравнений и неравенств, к исследованию функции (например, к заданиям на нахождение области определения некоторых функций, их корней, промежутков знакопостоянства и т.д.). С другой стороны, функциональная линия оказывает существенное влияние как на содержание линии уравнений и неравенств, так и на стиль ее изучения. В частности, функциональные представления служат основой привлечения графической наглядности к решению и исследованию уравнений, неравенств и их систем.

1 Виды уравнений в школьном курсе математике

Понятие «уравнение » относится к важнейшим общематематическим понятиям.

Существуют различные трактовки понятия «уравнение».

И.Я. Виленкин и др. приводит логико - математическое определение уравнения. Пусть на множестве М зафиксирован набор алгебраических операций, х - переменная на М; тогда уравнением на множестве М относительно x называется предикат вида, где и - термы относительно заданных операций, в запись которого входит символ.Аналогично определиться уравнение от двух и более переменных.

Принятые в логики термины «терм» и «предикат» соответствуют такие термины школьной математики как «выражение» и «предложение с переменной». Поэтому наиболее близко к приведенному формальному определению можно считать следующее определение: «Предложение с переменной, имеющий вид равенства между двумя выражениями с этой переменной, называется уравнением». Такое определение приведено в учебнике «Алгебра и начала анализа» А.Н Колмогоров и др. Равенство с переменной называется уравнением. Значение переменной при котором равенство с переменной обращается в верное числовое равенство, называется корнем уравнения.

Часто, особенно в начале систематического курса алгебры, понятие уравнение вводится по средством выделение его из алгебраического метода решения задач. Например, в учебнике Ш.А.Алимова и др. понятие уравнение вводиться на материале текстовой задачи. Переход к понятию уравнения осуществляется на основе анализа некоторых формальных особенностей записи, выражающих содержание данной задачи в алгебраической форме: «Равенство, содержащее неизвестное число, обозначенное буквой, называется уравнением». Указываемый способ введения понятия уравнения соответствует еще одному компоненту понятия уравнения - прикладному.

Еще один подход к понятию уравнения получается при составления области определения уравнения и множества его корней. Например, в учебнике Д.К.Фадеева «Буквенное равенство, которое не обязательно превращается в верное числовое равенство при допустимых наборов букв, называется уравнение».

Можно встретить и третий вариант определения, роль которого проявляется при изучения графического метода решения уравнений: «Уравнение - это равенство двух функций».

Среди всех изучаемых в курсе математике типов уравнений В.И. Мишин выделяет сравнительно ограничение количество основных типов. к их числу относится: линейное уравнение с одним неизвестным, систему двух линейных уравнений с двумя неизвестными, квадратные уравнения, простейшие иррациональные и трансцендентные.

Ю.М.Колягин и др. классифицируют по виду функций, представляющих правую и левую части уравнений:

Уравнение называется:

алгебраическим, если и - алгебраические функции;

трансцендентным, если хотя одним из функций и трансцендентная;

рациональным алгебраическим (или просто рациональным) , если алгебраические функции и рациональные;

иррациональным алгебраическим(или просто иррациональным), если хотя бы одна из алгебраических функций и иррациональная;

целым рациональным, если функция и целые рациональные;

дробным рациональным, если хотя бы одна из рациональных функций и дробная рациональная.

Уравнение, где - многочлен стандартного вида, называется линейным (первой степени), квадратным(во второй степени), кубическим (третьей степени) и вообще - ой степени, если многочлен, имеет соответственно первую, вторую, третью и вообще - ую степень.

В школе изучаются несколько типов уравнений. К их числу относятся: линейные уравнения с одной не известной, квадратные уравнения, иррациональные и трансцендентные уравнения, рациональные уравнения. Эти типы уравнений изучаются с большой тщательностью, для них указывается и доводиться до автоматизма выполнение алгоритма решения, указывается форма, в котором должен записываться ответ.

Виды уравнений и методы решения:

) Линейное уравнение

Уравнением с одной переменной, называется равенство, содержащее только одну переменную.

Корнем (или решением) уравнения называется такое значение переменной, при котором уравнение превращается в верное числовое равенство.

Найти все корни уравнения или доказать, что их нет - это значит решить уравнение.

Пример 1: Решить уравнение.

;

;

) Квадратное уравнение

Квадратное уравнение - это уравнение вида, где коэффициенты a, b и c - любые действительные числа, причем а≠0.

Корнями квадратного уравнения называют такие значения переменной, при которых квадратное уравнение обращается в верное числовое равенство.

Решить квадратное уравнение - значит найти все его корни или установить, что корней нет.

Пример 2: Решить уравнение

Данное уравнение можно решить либо через Теорему Виета, либо через дискриминант.

Ответ: х1=-1, х2=-2.

) Рациональные уравнения

рациональные уравнения - уравнения вида

где и многочлены, атак же уравнения вида, где и - рациональные.

Пример 3: Решить уравнение

) Иррациональные уравнения

Иррациональные уравнения - это уравнения, в которых переменная содержится под знаком корня или под знаком операции возведения в дробную степень.

Пример 4: Решить уравнение

Возведем обе части в квадрат:

) Показательные и логарифмические уравнения

При решения показательных уравнений используются два основных метода: а) переход от уравнения к уравнению;б) введения новых переменных. Иногда приходиться применять исскуственные приемы.

Логарифмические уравнения - решаются тремя методами, то есть переход от уравнения к уравнению - следствию;метод введения новых переменных логарифмирования, то есть переход от уравнения к уравнению.

А так же во многих случаях при решения логарифмического уравнения приходиться использовать свойства логарифма произведения, частного, степени, корня.

2 Виды неравенств в школьном курсе

В целом изучение неравенств в школьном курсе математики организовано так же, как и уравнений.

Отметим ряд особенностей изучения неравенств.

Как и в случае уравнений отсутствует теория равносильности неравенств. Учащимся предлагаются её незначительные фрагменты, приведённые в содержании учебного материала.

Большинство приёмов решения неравенств состоит в переходе от данного неравенства a>b к уравнению а=b и последующем переходе от найденных корней уравнения к множеству решений исходного неравенства. Например, такая ситуация возникает при решении рациональных неравенств методом интервалов, при решении простейших тригонометрических неравенств.

В изучении неравенств большую роль играют наглядно - графические средства.

Два выражения (числовые или буквенные), соединённые одним из знаков: «больше» (>), «меньше» (<), «больше или равно» (≥), «меньше или равно» (≤) образуют неравенство (числовое или буквенное). Любое справедливое неравенство называется тождественным.

В зависимости от знака неравенства мы имеем либо строгие неравенства (> , <), либо нестроги (≥ , ≤).

Буквенные величины, входящие в неравенство, могут быть как известными, так и неизвестными.

Решить неравенство - это найти границы, внутри которых должны находиться неизвестные, так чтобы неравенство было тождественным.

Основные свойства неравенств:

Если a < b, то b > a; или если a > b, то b < a .

Если a > b, то a + c > b + c; или если a < b, то a + c < b + c. То есть, можно прибавлять (вычитать) одно и то же число к обеим частям неравенства.

Если a > b и c > d, то a + c > b + d . То есть, неравенства одного смысла (с одинаковым знаком > или <) можно почленно складывать.

Если a > b и c < d, то a - c > b - d . Или, если a < b и c > d, то a - c < b - d . То есть, неравенства противоположного смысла можно почленно вычитать одно из другого, и брать знак неравенства, являющегося уменьшаемым.

Если a > b и m > 0, то ma > mb и a/m > b/m . То есть, обе части неравенства можно умножить или разделить на одно и то же положительное число. Неравенство при этом сохраняет свой знак.

Если a > b и m < 0, то ma < mb и a/m < b/m . То есть, обе части неравенства можно умножить или разделить на одно и то же отрицательное число. Неравенство при этом меняет свой знак на обратный.

Неравенства, содержащие неизвестные величины, подразделяются на:

¾алгебраические;

¾трансцендентные;

Алгебраические неравенства подразделяются на неравенства первой, второй, и т. д. степени.

Неравенство - алгебраическое, первой степени.

Неравенство - алгебраическое, второй степени.

Неравенство - трансцендентное.

Виды неравенства и способы их решения:

)Линейные неравенства

Пример 5: Решить неравенство

Ответ: x<-2.

2) Квадратные неравенства

Пример 6: Решить неравенство х2> 4

х2> 4

(х - 2)∙(х + 2) > 0.

Решаем методом интервалов.

) Рациональные неравенства

Пример 7: Найти все целые значения, удовлетворяющие неравенству

Методом интервалов:

Решение неравенства:

Целые числа, принадлежащие интервалу: -6;-5;-4;1.

Ответ:-6;-5;-4;1.

4) Иррациональные неравенства

Начинать решение иррациональных неравенств нужно с нахождения области определения.

Пример 8: Решить неравенство

Область определения:

Так как арифметический корень не может быть отрицательным числом, то

Ответ: [-2;7)/

) Показательные, логарифмические неравенства

Пример 9: Решите неравенство..

Пример 10: Решите неравенство.

Ответ:.

3 Особенности решения уравнения с параметрами

Рассмотрим уравнение

F(х,у,...,z;б,в,...,г)=0(1)

с неизвестными х, у, ..., z и с параметрами б,в, ..., г;при всякой допустимой системе значений параметров б00, ..., г 0 уравнение (1) обращается в уравнение

F(х,у,...,z;б00,...,г0)=0(2)

с неизвестными х, у,..., z, не содержащее параметров. Уравнение (2) имеет некоторое вполне определенное множество решений.

Решить уравнение содержащее параметры, это значит, для каждой допустимой системы значений параметров найти множество всех решений данного уравнения.

Основные виды уравнений с параметрами:

) Линейные и квадратные уравнения, содержащие параметр

Линейные и квадратные уравнения, содержащие параметр, можно объединить в одну группу - группу уравнений с параметром не выше второй степени.

Уравнения с параметром не выше второй степени являются самыми распространенными в практике итоговых и конкурсных заданий. Их общий вид определяется многочленом.

Контрольные значения параметра определяются уравнением. На выделенных контрольными значениями промежутках допустимых значений параметра дискриминант имеет определенный знак, соответствующие частные уравнения принадлежат одному из двух последних типов.

Тогда решением всякого уравнения с параметром не выше второй степени осуществляется по следующим этапам:

На числовой прямой отмечаются все контрольные значения параметра, для которых соответствующие частные уравнения не определены.

На области допустимых значений параметра исходного уравнения при помощи равносильных преобразований приводится к виду.

Выделяют множество контрольных значений параметра, для которых уравнение имеет конечное множество решений, то для каждого найденного контрольного значения параметра соответствующее частное уравнение решается отдельно.

Проводится классификация частных уравнений по первым трем типам. На бесконечном множестве решений уравнения проводится решение уравнения, выделяются типы бесконечных и пустых особых частных уравнений. Множеству значений параметра, для которых и, соответствует третий тип не особых частных уравнений.

Выделяются контрольные значения параметра, для которых дискриминант обращается в нуль. Соответствующие не особые частные уравнения имеют двукратный корень.

Найденные контрольные значения параметра разбивают область допустимых значений параметра на промежутки. На каждом из промежутков определяется знак дискриминанта.

) Дробно-рациональные уравнения, содержащие параметр, сводящиеся к линейным.

Процесс решения дробно-рациональных уравнений протекает по обычной схеме: данное уравнение заменяется целым путем умножения обеих частей уравнения на общий знаменатель левой и правой его частей. После чего учащиеся решают известным им способом целое уравнение, исключая посторонние корни, то есть числа, которые обращают общий знаменатель в нуль. В случае уравнений с параметрами эта задача более сложная. Здесь, чтобы посторонние корни исключить, требуется находить значение параметра, обращающее общий знаменатель в нуль, то есть решать соответствующие уравнения относительно параметра.

) Иррациональные уравнения, содержащие параметр.

Главными особенностями при решении уравнений такого типа являются:

Ограничение области определения неизвестной х, так как она меняется в зависимости от значения параметра;

При рассмотрении всех особых случаев и возведении обеих частей иррационального уравнения в квадрат мы переходим к решению квадратного уравнения с параметром.

) Показательные уравнения, содержащие параметр.

Большинство показательных уравнений с параметрами сводится к показательным уравнениям вида: аf(x) = bg(х), где а>0, b>0.

Область допустимых значений такого уравнения находится как пересечение областей допустимых значений функций f(x) и g(х). Для решения уравнения аf(x) = bg(х) необходимо рассмотреть следующие случаи:

При а=b=1 решением уравнения аf(x) = bg(х) является область его допустимых значений D.

При а=1, b≠1 решением уравнения аf(x) = bg(х) служит решение уравнения g(х)=0 на области допустимых значений D.

При а≠1, b=1 решение уравнения аf(x) = bg(х) находится как решение уравнения f(х) = 0 на области D.

При а=b (а>0, а≠1, b>0, b≠1) уравнение аf(x) = bg(х) равносильно уравнению f(х) = g(х) на области D.

При а≠b (а>0, а≠1, b>0, b≠1) уравнение аf(x) = bg(х) тождественно уравнению (c>0, c≠1) на области D.

) Логарифмические уравнения, содержащие параметр.

Решение логарифмических уравнений с параметрами сводится к нахождению корней элементарного логарифмического уравнения.

Важным моментом решения уравнений такого типа является проверка принадлежности найденных корней ОДЗ исходного уравнения.

Основные методы решения уравнений, содержащих параметр:

Аналитический метод


4 Особенности решения неравенства с параметрами

Неравенство с параметрами - математическое неравенствовнешний вид и решение которого зависит от значений одного или нескольких параметров. Как при решении уравнения, так и при решении неравенства требуется найти все те значения неизвестной величины, для каждого из которых указанное соотношение оказывается верным.

Решение неравенства (уравнения) может включать в себя несколько методов решения, соответствующих каждому виду уравнения при определенных значениях параметра. Например, при каком-то значении параметра неравенство линейное, поэтому решаем его аналитически тождественными преобразованиями; при остальных значениях параметра неравенство квадратичное, - решаем его функционально-графическим способом.

Аналогично уравнениям с параметрами, неравенства с параметрами имеют ту же классификацию видов и методов решения.

) Линейные и квадратные неравенства, содержащие параметр

) Дробно-рациональные неравенства, содержащие параметр, сводящиеся к линейным.

Решение некоторых дробно-рациональных неравенств сводится к решению неравенств первой или второй степени.

) Иррациональные неравенства, содержащие параметр.

) Показательные неравенства, содержащие параметр.

) Логарифмические неравенств, содержащие параметр.

Основные методы решения неравенств, содержащих параметр:

Аналитический метод

Свойства функций в задачах, содержащих параметр. Функциональный подход.

Графический метод. Координатная плоскость (x;y).

Графический метод. Координатная плоскость (x;a).

Решение задач с параметрами является одним из самых трудных разделов школьной математики. При решении задач с параметрами требуется, кроме хорошего знания стандартных методов решений уравнений и неравенств, умение проводить довольно разветвленные логические построения, аккуратность и внимательность для того, чтобы не потерять решений и не приобрести лишних. Это требует от школьника более развитого логического мышления и математической культуры, но, в свою очередь, эти задачи сами способствуют их развитию. Опыт вступительных экзаменов показывает, что учащиеся, владеющие методами их решения, обычно успешно справляются и с другими задачами.

К сожалению, в программах по математике для неспециализированных школ задачам с параметром практически не отводится места, а, например, в учебнике для учащихся школ и классов с углубленным изучением курса математики («Алгебра и математический анализ для 10 и 11 классов», Н.Я. Виленкин, О.С. Ивашев-Мусатов, С.И. Шварцбурд) им отведено место только в 11-м классе. Между тем, задачи с параметрами можно и нужно использовать уже начиная с линейных и квадратных уравнений и неравенств. Это могут быть задачи нахождения решений в общем виде, определения корней, удовлетворяющих каким-либо свойствам, исследования количества корней в зависимости от значений параметра. Так сделано в «Сборнике задач по алгебре для 8-9 классов», 1994 г. (авторы: М.Л. Галицкий, А.М. Гольдман, Л.И. Звавич). Важно, чтобы школьники уже на первых простых примерах усвоили: во-первых, необходимость аккуратного обращения с параметром - фиксированным, но неизвестным числом, поняли, что оно имеет двойственную природу (с одной стороны, это некоторое число, с другой стороны, степень свободы общения с ним ограничивается его неизвестностью); во-вторых, что запись ответа существенно отличается от записи ответов аналогичных уравнений и неравенств без параметра.

Методически было бы правильно каждый пройденный тип уравнений (неравенств) завершать задачами с использованием параметра. Во-первых, школьнику трудно привыкнуть к параметру за два-три занятия - нужно время; во-вторых, использование подобных задач улучшает закрепление пройденного материала; в-третьих, оно способствует развитию его математической и логической культуры, а также развитию интереса к математике, поскольку открывает перед ним новые методы и возможности для самостоятельного поиска.

Понятие параметра является математическим понятием, которое часто используется в школьном курсе математики и в смежных дисциплинах.

класс - при изучении линейной функции и линейного уравнения с одной переменной.

класс - при изучении квадратных уравнений.

Общеобразовательная программа школьного курса математики не предусматривает решение задач с параметрами, а на вступительных к заменах в вузы и на ЕГЭ по математике задачи с параметрами присутствуют, решение которых вызывает большие затруднения учащихся.Задачи с параметрами обладают диагностической и прогностической ценностью, которые позволяют проверить знания основных разделов школьного курса математики, уровень логического мышления, первоначальные навыки исследовательской деятельности.

При решении уравнения (неравенства) можно пользоваться следующим алгоритмом.

Алгоритм решения уравнения или неравенства с параметром

1. Определяют ограничения, налагаемые на значения неизвестного и параметра, вытекающие из того, что функции и арифметические операции в или имеют смысл.

Определяют формальные решения, записываемые без учета ограничений. Если при решении возникают контрольные значения параметра, то их наносят на числовую ось. Эти значения разбивают область допустимых значений параметра на подмножества. На каждом из подмножеств решают заданное уравнение..

Исключают те значения параметра, при которых формальные решения не удовлетворяют полученным ограничениям.

На числовую ось. добавляют значения параметра, найденные в п.3. Для каждого из промежутков на оси. записывают все полученные решения в зависимости от значений параметра. (В случае достаточно простых уравнений п.4 можно опустить).

Выписывают ответ, т.е. записывают решения в зависимости от значений параметра.

Наличие параметра в задаче предполагает специальную форму записи ответа, позволяющую установить, каков ответ для любого допустимого значения параметра. Недопустимые значения также указываются в ответе, и считается, что при этих значениях параметра задача не имеет решения. При записи ответа обычно значения параметра перечисляются в порядке возрастания от −∞ до +∞, но иногда для компактности ответа объединяют промежутки для параметра, на которых формулы решения совпадают.

В случае ветвления решения удобно использовать числовую прямую., на которую наносятся контрольные значения параметра, а на промежутках, на которые эти значения разбили прямую, указываются ответы задачи. Данный прием позволяет в дальнейшем не потерять найденные ответы и четко указать значения параметра, которым они соответствуют.

Продемонстрируем сказанное выше на примере.

Пример 10: Решить неравенство.

Контрольные значения параметра получаются из условия, так как при неравенство не содержит переменной x.

Нанесем на числовую ось Oa контрольные значения. Они разбивают ось Oa на промежутки:

) a<0; 2) 0< a <2; 3) a>2

На каждом из этих промежутков решим данное неравенство. Значения a=0 и. a=2 требуют отдельного рассмотрения.

Если a<0, то a(a-2)>0. Разделив обе части неравенства на множитель a(a − 2) ≠ 0 , получим x>.

Если 2>a>0, a(a − 2) < 0 и, следовательно, x<.

Если a>2, a(a − 2) > 0 и x>/

Нанесем получаемые в ходе решения ответы на соответствующие промежутки числовой оси Oa и запишем ответ.

Промежуток, к которому относится соответствующее решение, помечается на рисунке дугой. На ее конце ставится стрелочка в том случае, если это решение не относится к крайней точке промежутка.

Ответ: Если a<0, то x>; если 02, то x>; если a=0 и a=2, то решений нет.

Главная особенность задач с параметрами - ветвления решения в зависимости от значений параметров. Другими словами, процесс решения осуществляется классификаций частных уравнений (неравенств) по типам с последующим поиском решений каждого типа.

Одновременно решение бесконечной совокупности частных уравнений и неравенств с учетом требования равносильности преобразований возможно лишь при развитии достаточного уровня логического мышления. С другой стороны, формирование методов решения уравнений и неравенств с параметрами обеспечивает значительный процесс в развитии математической культуры учащихся. Развивающий характер уравнений и неравенств с параметрами определяется их способностью реализовывать многие виды мыслительной деятельности учащихся:

Выработка определенных алгоритмов мышления.

Умение определить наличие и количество корней в уравнении.

Решение семейств уравнений, являющихся следствием данного.

Выражение одной переменной через другую.

Повторение большого объема формул при решении.

Значение соответствующих методов решения.

Широкое применение словесной и графической аргументации.

Развитие графической культуры учащихся.

Все вышесказанное позволяет говорить о необходимости изучения решений задач с параметрами.

уравнение неравенство параметр

Заключение

Таким образом, в нашей курсовой работе речь шла о уравнениях и неравенствах с параметрами в школьном курсе математике, особенности их решения. Были рассмотрены уравнения и неравенства в школьном курсе математике, особенности решения уравнений и неравенств с параметрами.Была разработана методики к решению уравнений и неравенств с параметрами.

Цель нашей курсовой работы заключалась в выявление видов, методов решения уравнений и неравенств с параметрами.

Для достижения данной цели, была подобрана и изучена литература по данной проблеме, исследовано особенности решения уравнений и неарвенств с параметрамишкольном курсе математики основной школы, представлена методические рекомендации к решению уравнений(неравенств) с параметрами.

Вывод: Задачи с параметрами являются самыми сложными из всех заданий школьного курса математики. Для их решения требуется умение мыслить логически: необходимо в каждый момент проведения решения достаточно отчётливо представлять себе, что уже сделано, что ещё надо сделать, что означают уже полученные результаты. В заданиях ЕГЭ по математике проверяется умение выпускника мыслить сжато, логично и аргументировано.

Изучение уравнений и неравенств с параметрами в общеобразовательных школах дает учащимся большие возможности для анализа различных ситуаций, то есть показывает значимость этих понятий при решении многих практических задач. Именно с простейших практических задач и приложений математически постепенно формируется у школьников понимание значимости математики в жизни.

Список используемой литературы

уравнение неравенство математика

1.Алгебра. 7 класс: Учеб.для общеобразовательных учеб. заведений / К.С. Муравин, Г.К. Муравин, Г.В. Дорофеев. - М.: Дрофа, 2010.

2.Алгебра. 7 класс: В двух частях. Ч. 1: Учебник для общеобразоват. учреждений / А.Г. Мордкович. - М.: Мнемозина, 2010.

3.Алгебра. 7 класс: Учебник для общеобразоват. учреждений / С.М. Никольский, М.К. Потапов и др. - М.: Просвещение, 2011.

Алгебра. 8 класс: Учеб.для общеобразовательных учеб. заведений / К.С. Муравин, Г.К. Муравин, Г.В. Дорофеев. - М.: Дрофа, 2012.

Алгебра. 8 класс: В двух частях. Ч. 1: Учебник для общеобразоват. учреждений / А.Г. Мордкович. - М.: Мнемозина, 2011.

Алгебра. 8 класс: Учебник для общеобразоват. учреждений / С.М. Никольский, М.К. Потапов и др. - М.: Просвещение, 2011.

Алгебра. 9 класс: Учеб.для общеобразовательных учеб. заведений / К.С. Муравин, Г.К. Муравин, Г.В. Дорофеев. - М.: Дрофа, 2013.

Алгебра. 9 класс: В двух частях. Ч. 1: Учебник для общеобразоват. учреждений / А.Г. Мордкович. - М.: Мнемозина, 2013.

Алгебра. 9 класс: Учебник для общеобразоват. учреждений / С.М. Никольский, М.К. Потапов и др. - М.: Просвещение, 2011.

Алгебра. Учеб.для 7 класса средней школы / Ю.Н. Макарычев, Н.Г. Миндюк и др.; под ред. Теляковского. - М.: Просвещение, 2011.

Алгебра. Учеб.для 7 класса средней школы /Ш.А. Алимов, Ю.М. Колягин и др. - М.: Просвещение, 2012.

Алгебра. Учеб.для 8 класса средней школы / Ю.Н. Макарычев, Н.Г. Миндюк и др.; под ред. Теляковского. - М.: Просвещение, 2014.

Алгебра. Учеб.для 8 класса средней школы /Ш.А. Алимов, Ю.М. Колягин и др. - М.: Просвещение, 2011.

Алгебра. Учеб.для 9 класса средней школы / Ю.Н. Макарычев, Н.Г. Миндюк и др.; под ред. Теляковского. - М.: Просвещение, 2010.

Алгебра. Учеб.для 9 класса средней школы /Ш.А. Алимов, Ю.М. Колягин и др. - М.: Просвещение, 2001.

Беляева Э.С. Математика. Уравнение и неравенство с параметрами в 2 ч.: Учебное пособие/ Беляева Э.С., Потапов А.С., Титоренко С.А. -., - М.:,2009.

Крамор В.С. Задачи с параметром и методы их решения: Учебное пособие /- М.: Оникс; Мир и Образование,2007

Козко А.И. Задачи с параметрами и другие сложные задачи: Учебное пособие для вузов/Козко А. И.,Чирский В. Г. - М.:,МЦНМО,2007.

Мирошин В.В. Решение задач с параметрами. Теория и практика: Учебное пособие /. - М.: Экзамен,2009.

Прокофьев А.А. Задачи с параметрами: Учебное пособие. - М.: МИЭТ, 2004.

Севрюков П.Ф. Школа решения задач с параметрами: Учебное пособие /Севрюков П.Ф., Смоляков А. Н.-2-е изд.- М.:,2009.


Человек, умеющий решать задачи с параметрами, в совершенстве знает теорию и умеет ее применять не механически, а с логикой. Он «понимает» функцию, «чувствует» ее, считает ее своим другом или хотя бы хорошим знакомым, а не просто знает о ее существовании.


Что же такое уравнение с параметром? Пусть дано уравнение f (x; a) = 0. Если ставится задача отыскать все такие пары (x; a), которые удовлетворяют данному уравнению, то оно рассматривается как уравнение с двумя равноправными переменными х и а. Но можно поставить и другую задачу, полагая переменные неравноправными. Дело в том, что если придать переменной а какое-либо фиксированное значение, то f (x; a) = 0 превращается в уравнение с одной переменной х, и решения этого уравнения, естественно, зависят от выбранного значения а.


Основная трудность, связанная с решением уравнений (и тем более неравенств) с параметром, состоит в следующем: -при одних значениях параметра уравнение не имеет решений; -при других – имеет бесконечно много решений; -при третьих – оно решается по одним формулам; - при четвертых – оно решается по другим формулам. - Если уравнение f (x; a) = 0 нужно решить относительно переменной Х, а под a понимается произвольное действи- тельное число, то уравнение называют уравнением с параметром a.


Решить уравнение с параметром f (x; a) = 0 – это решить семейство уравнений, получающихся из уравнения f (x; a) = 0 при любых действительных значениях параметра. Уравнение с параметром – это, по сути дела, краткая запись бесконечного семейства урав- нений. Каждое из уравнений семейства полу- чается из данного уравнения с параметром при конкретном значении параметра. Поэтому задачу решения уравнения с параметром можно сформулировать следующим образом:


Выписать каждое уравнение из бесконечного семейства уравнений невозможно, но тем не менее каждое уравнение из бесконечного семейства должно быть решено. Сделать это, например, можно, если по некоторому целесообразному признаку разбить множество всех значений параметра на подмножества, а затем заданное уравнение решить на каждом из этих подмножеств. Решение линейных уравнений


Чтобы разбить множество значений параметра на подмножества, полезно воспользоваться теми значениями параметра, при которых или при переходе через которые происходит качественное изменение уравнения. Такие значения параметра можно назвать контрольными или особыми. Искусство решения уравнения с параметрами как раз и состоит в том, чтобы уметь находить контрольные значения параметра.




Тип 1. Уравнения, неравенства, их системы, которые необходимо решить либо для любого значения параметра, либо для значений параметра, принадлежащих заранее оговоренному множеству. Этот тип задач является базовым при овладении темой «Задачи с параметрами», поскольку вложенный труд предопределяет успех и при решении задач всех других основных типов.


Тип 2. Уравнения, неравенства, их системы, для которых требуется определить количество решений в зависимости от значения параметра (параметров). При решении задач данного типа нет необходимости ни решать заданные уравнения, неравенства, их системы, ни приводить эти решения; такая лишняя в большинстве случаев работа является тактической ошибкой, приводящей к неоправданным затратам времени. Но иногда прямое решение является единственным разумным путем получения ответа при решении задачи типа 2.


Тип 3. Уравнения, неравенства, их системы, для которых требуется найти все те значения параметра, при которых указанные уравнения, неравенства, их системы имеют заданное число решений (в частности, не имеют или имеют бесконечное множество решений). Задачи типа 3 в каком-то смысле обратны задачам типа 2.


Тип 4. Уравнения, неравенства, их системы и совокупности, для которых при искомых значениях параметра множество решений удовлетворяет заданным условиям в области определения. Например, найти значения параметра, при которых: 1) уравнение выполняется для любого значения переменной из заданного промежутка; 2) множество решений первого уравнения является подмножеством множества решений второго уравнения и т. д.


Основные способы (методы) решения задач с параметром. Способ I (аналитический). Аналитический способ решения задач с параметром есть самый трудный способ, требующий высокой грамотности и наибольших усилий по овладению им. Способ II (графический). В зависимости от задачи (с переменной x и параметром a) рассматриваются графики или в координатной плоскости Оху, или в координатной плоскости Оха. Способ III (решение относительно параметра). При решении этим способом переменные x и a принимаются равноправными и выбирается та переменная, относительно которой аналитическое решение признается более простым. После естественных упрощений возвращаемся к исходному смыслу переменных x и a и заканчиваем решение.


Пример 1. Найти значения параметра а, при которых уравнение а(2а + 3)х + а 2 = а 2 х + 3а имеет единственный отрицательный корень. Решение. Данное уравнение равносильно следующему:. Если а(а + 3) 0, то есть а 0, а –3, то уравнение имеет единственный корень х =. х


Пример 2. Решите уравнение. Решение. Так как знаменатель дроби не может равняться нулю, имеем (b – 1)(x + 3) 0, то есть b 1, x –3. Умножив обе части уравнения на (b – 1)(x + 3) 0, получаем уравнение: Это уравнение является линейным относительно переменной х. При 4b – 9 = 0, то есть b = 2,25 уравнение принимает вид: При 4b – 9 0, то есть b 2,25 корень уравнения x =. Теперь надо проверить, нет ли таких значений b, при которых найденное значение х равно –3. Таким образом, при b 1, b 2,25, b –0,4 уравнение имеет единственный корень x =. О т в е т: при b 1, b 2,25, b –0,4 корень x = при b = 2,25, b = –0,4 решений нет; при b = 1 уравнение не имеет смысла.


Типы задач 2 и 3 отличает то, что при их решении не требуется получить явное решение, а нужно лишь найти те значения параметра, при которых это решение удовлетворяет тем или иным условиям. Примерами таких условий для решения могут служить следующие: существует решение; не существует решения; существует единственное решение; существует положительное решение; существует ровно k решений; существует решение, принадлежащее указанному промежутку. В этих случаях оказывается очень полезен графический способ решения задач с параметрами.


Можно выделить две разновидности применения графического метода при решении уравнения f (х) = f (а): На плоскости Оху рассматриваются график у = f (х) и семейство графиков у = f (а). Сюда же относятся задачи, решаемые с помощью «пучка прямых». Этот способ оказывается удобен в задачах с двумя неизвестными и одним параметром. На плоскости Оха (которую называют также фазовой) рассматриваются графики, в которых х – аргумент, а а – значение функции. Этот способ обычно применяется в задачах, в которых фигурируют лишь одна неизвестная и один параметр (или сводящиеся к таким).


Пример 1. При каких значениях параметра а уравнение 3х 4 + 4х 3 – 12х 2 = а имеет не менее трех корней? Решение. Построим графики функций f (х) = 3х 4 + 4х 3 – 12х 2 и f (х) = а в одной системе координат. Имеем: f "(х) = 12х х 2 – 24х = 12х(х + 2)(х – 1), f "(х) = 0 при х = –2 (точка минимума), при х = 0 (точка максимума) и при х = 1 (точка максимума). Найдем значения функции в точках экстремума: f (–2) = –32, f (0) = 0, f (1) = –5. Строим схематически график функции с учетом точек экстремума. Графическая модель позволяет ответить на поставленный вопрос: уравнение 3х 4 + 4х 3 – 12х 2 = а имеет не менее трех корней, если –5


Пример 2. Сколько корней при различных значениях параметра а имеет уравнение? Решение. Ответ на поставленный вопрос связан с числом точек пересечения графика полуокружности у = и прямой у = х + а. Прямая, являющаяся касательной, имеет формулу у = х +. Заданное уравнение не имеет корней при а; имеет один корень при –2


Пример3. Сколько решений имеет уравнение |х + 2| = ах + 1 в зависимости от параметра а? Решение. Можно построить графики у = |х + 2| и у = ах + 1. Но мы поступим иначе. При х = 0 (21) решений нет. Разделим уравнение на х: и рассмотрим два случая:1)х > –2 или х=2 2)2) х –2 или х=2 2)2) х


Пример использования «пучка прямых» на плоскости. Найдите значения параметра a, при которых уравнение |3x + 3| = ax + 5 имеет единственное решение. Решение. Уравнение |3x + 3| = ax + 5 равносильно следующей системе: Уравнение y – 5 = a(x – 0) задает на плоскости пучок прямых с центром A (0; 5). Проведем прямые из пучка прямых, которые будут параллельны сторонам уголка, являющегося графиком y = |3x + 3|. Эти прямые l и l 1 пересекают в одной точке график y = |3x + 3|. Уравнения этих прямых y = 3x + 5 и у = –3х + 5. Кроме того, всякая прямая из пучка, расположенная между этими прямыми, также будет пересекать график y = |3x + 3| в одной точке. Значит, искомые значения параметра [–3; 3].


Алгоритм решения уравнений с использованием фазовой плоскости: 1. Находим область определения уравнения. 2. Выражаем параметр а как функцию от х. 3. В системе координат хОа строим график функции а = f(х) для тех значений х, которые входят в область определения данного уравнения. 4. Находим точки пересечения прямой а = с, где с є (-; +) с графиком функции а = f(х). Если прямая а = с пересекает график а = f(х), то определяем абсциссы точек пересечения. Для этого достаточно решить уравнение а = f(х) относительно х. 5.Записываем ответ.


Пример решения неравенства с помощью «фазовой плоскости». Решите неравенство х. Решение.По равносильному переходу Теперь на плоскости Оха построим графики функций Точки пересечения параболы и прямой х 2 – 2х = –2х х = 0. Условие а –2х автоматически выполняется при а х 2 – 2х Таким образом, в левой полуплоскости (х

Государственное бюджетное общеобразовательное учреждение

Самарской области средняя общеобразовательная

школа № 2 им. В. Маскина ж.-д. ст. Клявлино

муниципального района Клявлинский

Самарской области

« Уравнения

и

неравенства

с параметрами»

учебное пособие

Клявлино

Учебное пособие

« Уравнения и неравенства с параметрами» для учащихся 10 –11 классов

данное пособие является приложением к программе элективного курса «Уравнения и неравенства с параметрами», которая прошла внешнюю экспертизу (научно-методическим экспертным советом министерства образования и науки Самарской области от 19 декабря 2008 года бала рекомендована к использованию в образовательных учреждениях Самарской области)

Авторы

Ромаданова Ирина Владимировна

учитель математики МОУ Клявлинской средней общеобразовательной

школы № 2 им. В.Маскина Клявлинского района Самарской области

Сербаева Ирина Алексеевна

Введение……………………………………………………………3-4

Линейные уравнения и неравенства с параметрами……………..4-7

Квадратные уравнения и неравенства с параметрами……………7-9

Дробно- рациональные уравнения с параметрами……………..10-11

Иррациональные уравнения и неравенства с параметрами……11-13

Тригонометрические уравнения и неравенства с параметрами.14-15

Показательные уравнения и неравенства с параметрами………16-17

Логарифмические уравнения и неравенства с параметрами…...16-18

Задачи ЕГЭ………………………………………………………...18-20

Задания для самостоятельной работы…………………………...21-28

Введение.

Уравнения и неравенства с параметрами.

Если в уравнении или неравенстве некоторые коэффициенты заданы не конкретными числовыми значениями, а обозначены буквами, то они называются параметрами, а само уравнение или неравенство параметрическим.

Для того, чтобы решить уравнение или неравенство с параметрами необходимо:

    Выделить особое значение - это то значение параметра, в котором или при переходе через которое меняется решение уравнения или неравенства.

    Определить допустимые значения – это значения параметра, при которых уравнение или неравенство имеет смысл.

Решить уравнение или неравенство с параметрами означает:

1) определить, при каких значениях параметров существуют решения;

2) для каждой допустимой системы значений параметров найти соответствующее множество решений.

Решить уравнение с параметром можно следующими методами: аналитическим или графическим.

Аналитический метод предполагает задачу исследования уравнения рассмотрением нескольких случаев, ни один из которых нельзя упустить.

Решение уравнения и неравенства с параметрами каждого вида аналитическим методом предполагает подробный анализ ситуации и последовательное исследование, в ходе которого возникает необходимость «аккуратного обращения» с параметром.

Графический метод предполагает построение графика уравнения, по которому можно определить, как влияет соответственно, на решение уравнения изменение параметра. График подчас позволяет аналитически сформулировать необходимые и достаточные условия для решения поставленной задач. Графический метод решения особенно эффективен тогда, когда нужно установить, сколько корней имеет уравнение в зависимости от параметра и обладает несомненным преимуществом увидеть это наглядно.

§ 1. Линейные уравнения и неравенства.

Линейное уравнение а x = b , записанное в общем виде, можно рассматривать как уравнение с параметрами, где x – неизвестное, a , b – параметры. Для этого уравнения особым или контрольным значением параметра является то, при котором обращается в нуль коэффициент при неизвестном.

При решении линейного уравнения с параметром рассматриваются случаи, когда параметр равен своему особому значению и отличен от него.

Особым значением параметра a является значение а = 0.

b = 0 является особым значением параметра b .

При b ¹ 0 уравнение решений не имеет.

При b = 0 уравнение примет вид: 0х = 0 . Решением данного уравнения является любое действительное число.

Неравенства вида ах > b и ax < b (а ≠ 0) называются линейными неравенствами. Множество решений неравенства ах > b – промежуток

(; +), если a > 0 , и (-;) , если а < 0 . Аналогично для неравенства

ах < b множество решений – промежуток (-;), если a > 0, и (; +), если а < 0.

Пример 1. Решить уравнение ах = 5

Решение : Это линейное уравнение.

Если а = 0 , то уравнение 0 × х = 5 решения не имеет.

Если а ¹ 0, х = - решение уравнения.

Ответ : при а ¹ 0, х=

при а = 0 решения нет.

Пример 2. Решить уравнение ах – 6 = 2а – 3х.

Решение: Это линейное уравнение, ах – 6 = 2а – 3х (1)

ах + 3х = 2а +6

Переписав уравнение в виде (а+3)х = 2(а+3) , рассмотрим два случая:

а= -3 и а ¹ -3.

Если а= -3 , то любое действительное число х является корнем уравнения (1). Если же а ¹ -3 , уравнение (1) имеет единственный корень х = 2.

Ответ: При а = -3, х R ; при а ¹ -3, х = 2.

Пример 3. При каких значениях параметра а среди корней уравнения

2ах – 4х – а 2 + 4а – 4 = 0 есть корни больше 1 ?

Решение : Решим уравнение 2ах – 4х – а 2 + 4а – 4 = 0 – линейное уравнение

2(а - 2) х = а 2 – 4а +4

2(а - 2) х = (а – 2) 2

При а = 2 решением уравнения 0х = 0 будет любое число, в том числе и большее 1.

При а ¹ 2 х =
.
По условию х > 1 , то есть
>1, а > 4.

Ответ: При а {2} U (4;∞).

Пример 4 . Для каждого значения параметра а найти количество корней уравнения ах=8.

Решение. ах = 8 – линейное уравнение.

y = a – семейство горизонтальных прямых;

y = - графиком является гипербола. Построим графики этих функций.

Ответ: Если а =0 , то уравнение решений не имеет. Если а ≠ 0 , то уравнение имеет одно решение.

Пример 5 . С помощью графиков выяснить, сколько корней имеет уравнение:

|х| = ах – 1.

y =| х | ,

y = ах – 1 – графиком является прямая, проходящая через точку (0;-1).

Построим графики этих функций.

Ответ:При|а|>1 - один корень

при | а| ≤1 – уравнение корней не имеет.

Пример 6 . Решить неравенство ах + 4 > 2х + а 2

Решение : ах + 4 > 2х + а 2
(а – 2) х >
а 2 – 4. Рассмотрим три случая.


Ответ. х > а + 2 при а > 2; х <а + 2, при а < 2; при а=2 решений нет.

§ 2. Квадратные уравнения и неравенства

Квадратное уравнение – это уравнение вида ах ² + b х + с = 0 , где а≠ 0,

а, b , с – параметры.

Для решения квадратных уравнений с параметром можно использовать стандартные способы решения на применение следующих формул:

1 ) дискриминанта квадратного уравнения: D = b ² - 4 ac , (
²-
ас)

2) формул корней квадратного уравнения: х 1 =
, х
2 =
,

1,2 =
)

Квадратными называются неравенства вида

a х 2 + b х + с > 0, a х 2 + b х + с< 0, (1), (2)

a х 2 + b х + с ≥ 0, a х 2 + b х + с ≤ 0, (3), (4)

Множество решений неравенства (3) получается объединением множеств решений неравенства (1) и уравнения , a х 2 + b х + с=0. Аналогично находится множество решений неравенства (4).

Если дискриминант квадратного трехчлена a х 2 + b х + с меньше нуля, то при а >0 трехчлен положителен при всех х R .

Если квадратный трехчлен имеет корни (х 1 < х 2 ), то при а > 0 он положителен на множестве (-; х 2 )
2; +) и отрицателен на интервале

(х 1 ; х 2 ). Если а < 0, то трехчлен положителен на интервале (х 1 ; х 2 ) и отрицателен при всех х (-; х 1 )
2; +).

Пример 1. Решить уравнение ах² - 2 (а – 1)х – 4 = 0 .

Это квадратное уравнение

Решение : Особое значение а = 0.

    При а = 0 получим линейное уравнение 2х – 4 = 0 . Оно имеет единственный корень х = 2.

    При а ≠ 0. Найдем дискриминант.

D = (а-1)² + 4а = (а+1)²

Если а = -1, то D = 0 – один корень.

Найдем корень, подставив вместо а = -1.

-х² + 4х – 4= 0, то есть х² -4х + 4 = 0, находим, что х=2.

Если а ≠ - 1 , то D >0 . По формуле корней получим: х=
;

х 1 =2, х 2 = -.

Ответ: При а=0 и а= -1 уравнение имеет один корень х = 2; при а ≠ 0 и

а ≠ - 1 уравнение имеет два корня х 1 =2, х 2 =-.

Пример 2. Найдите количество корней данного уравнения х²-2х-8-а=0 в зависимости от значений параметра а.

Решение. Перепишем данное уравнение в виде х²-2х-8=а

y = х²-2х-8 - графиком является парабола;

y - семейство горизонтальных прямых.

Построим графики функций.

Ответ: При а <-9 , уравнение решений не имеет; при а=-9, уравнение имеет одно решение; при а>-9 , уравнение имеет два решения.

Пример 3. При каких а неравенство (а – 3) х 2 – 2ах + 3а – 6 >0 выполняется для всех значений х?

Решение. Квадратный трехчлен положителен при всех значениях х, если

а-3 > 0 и D <0, т.е. при а, удовлетворяющих системе неравенств






, откуда следует, что a > 6 .

Ответ. a > 6

§ 3. Дробно- рациональные уравнения с параметром,

сводящиеся к линейным

Процесс решения дробных уравнений выполняется по обычной схеме: дробное заменяется целым путем умножения обеих частей уравнения на общий знаменатель левой и правой его частей. После чего решается целое уравнение, исключая посторонние корни, то есть числа, которые обращают знаменатель в нуль.

В случае уравнений с параметром эта задача более сложная. Здесь, чтобы «исключить» посторонние корни, требуется найти значение параметра, обращающее общий знаменатель в нуль, то есть решить соответствующие уравнения относительно параметра.

Пример 1. Решить уравнение
= 0

Решение: Д.З: х +2 ≠ 0 , х ≠ -2

х – а = 0, х = а.

Ответ: При а ≠ - 2, х=а

При а = -2 корней нет.

Пример 2 . Решить уравнение
-
=
(1)

Это дробно- рациональное уравнение

Решение: Значение а = 0 является особым. При а = 0 уравнение теряет смысл и, следовательно, не имеет корней. Если а ≠ 0, то после преобразований уравнение примет вид: х² + 2 (1-а) х + а² - 2а – 3 = 0 (2) – квадратное уравнение.

Найдем дискриминант = (1 – а)² - (а² - 2а – 3)= 4, находим корни уравнения х 1 = а + 1, х 2 = а - 3.

При переходе от уравнения (1) к уравнению (2) расширилась область определения уравнения (1), что могло привести к появлению посторонних корней. Поэтому, необходима проверка.

П р о в е р к а. Исключим из найденных значений х такие, при которых

х 1 +1=0, х 1 +2=0, х 2 +1=0, х 2 +2=0.

Если х 1 +1=0, то есть (а+1) + 1= 0 , то а= -2. Таким образом,

при а= -2 , х 1 -

Если х 1 +2=0, то есть (а+1)+2=0, то а = - 3 . Таким образом, при а = - 3, х 1 - посторонний корень уравнения. (1).

Если х 2 +1=0, то есть (а – 3) + 1= 0 , то а = 2 . Таким образом, при а = 2 х 2 - посторонний корень уравнения (1).

Если х 2 +2=0, то есть (а – 3) + 2 = 0, то а=1 . Таким образом, при а = 1,

х 2 - посторонний корень уравнения (1).

В соответствии с этим при а = - 3 получаем х = - 3 – 3 = -6 ;

при а = - 2 х = -2 – 3= - 5;

при а = 1 х =1 + 1= 2;

при а = 2 х=2+1 = 3.

Можно записать ответ.

Ответ: 1) если а= -3, то х= -6; 2) если а= -2 , то х= -5 ; 3) если а= 0 , то корней нет; 4) если а= 1 , то х= 2; 5) если а=2 , то х=3 ; 6) если а ≠ -3, а ≠ -2, а ≠ 0, а≠ 1, а ≠ 2, то х 1 = а + 1, х 2 = а-3.

§4. Иррациональные уравнения и неравенства

Уравнения и неравенства, в которых переменная содержится под знаком корня, называется иррациональным.

Решение иррациональных уравнений сводится к переходу от иррационального к рациональному уравнению путем возведения в степень обеих частей уравнения или замены переменной. При возведении обеих частей уравнения в четную степень возможно появление посторонних корней. Поэтому при использовании указанного метода следует проверить все найденные корни подстановкой в исходное уравнение, учитывая при этом изменения значений параметра.

Уравнение вида
=g (x ) равносильно системе

Неравенство f (x ) ≥ 0 следует из уравнения f (x ) = g 2 (x ).

При решении иррациональных неравенств будем использовать следующие равносильные преобразования:

g(x)


≥g(x)

Пример 1. Решите уравнение
= х + 1 (3)

Это иррациональное уравнение

Решение: По определению арифметического корня уравнение (3) равносильно системе
.

При а = 2 первое уравнение системы имеет вид 0 х = 5 , то есть не имеет решений.

При а≠ 2 х=
.
Выясним, при каких значениях а найденное значение х удовлетворяет неравенству х ≥ -1:
≥ - 1,
≥ 0,

откуда а ≤ или а > 2.

Ответ: При а≤, а > 2 х=
,
при < а ≤ 2 уравнение решений не имеет.

Пример 2. Решить уравнение
= а
(приложение 4)

Решение. y =

y = а – семейство горизонтальных прямых.

Построим графики функций.

Ответ : при а<0 –решений нет;

при а 0 – одно решение.

Пример 3 . Решим неравенство (а+1)
<1.

Решение. О.Д.З. х ≤ 2 . Если а+1 ≤0 , то неравенство выполняется при всех допустимых значениях х . Если же а+1>0 , то

(а+1)
<1.

<



откуда х (2-
2

Ответ. х (- ;2 при а (-;-1, х (2-
2

при а (-1;+).

§ 5. Тригонометрические уравнения и неравенства.

Приведем формулы решений простейших тригонометрических уравнений:

Sinx = a
x= (-1)
n arcsin a+πn, n Z, ≤1, (1)

Cos x = a
x = ±arccos a + 2 πn, n Z, ≤1.
(2)

Если >1, то уравнения (1) и (2) решений не имеют.

tg x = a
x= arctg a + πn, n Z, aR

ctg x = a
x = arcctg a + πn, n Z, aR

Для каждого стандартного неравенства укажем множество решений:

1. sin x > a
arcsin a + 2 πn
Z,

при a <-1, xR ; при a ≥ 1, решений нет.

2. . sin x < a
π - arcsin a + 2 πnZ,

при а≤-1, решений нет; при а >1, xR

3. cos x > a
- arccos a + 2 πn < x < arccos a + 2 πn , n Z ,

при а<-1, xR ; при a ≥ 1 , решений нет.

4. cos x arccos a+ 2 πnZ,

при а≤-1 , решений нет; при a > 1, x R

5. tg x > a, arctg a + πnZ

6. tg x < a, -π/2 + πn Z

Пример1. Найти а , при которых данное уравнение имеет решение:

Cos 2 x + 2(a-2)cosx + a 2 – 4a – 5 =0.

Решение. Запишем уравнение в виде

с os 2 x + (2 a -4) cosx +(a – 5)(а+1) =0, решая его как квадратное, получаем cosx = 5-а и cosx = -а-1.

Уравнение cosx = 5- а имеет решения при условии -1≤ 5- а ≤1
4≤ а ≤ 6, а уравнение cosx = - а-1 при условии -1≤ -1- а ≤ 1
-2 ≤ а ≤0.

Ответ. а -2; 0
4; 6

Пример 2. При каких b найдется а такое, что неравенство
+
b > 0 выполняется при всех х ≠ πn , n Z .

Решение. Положим а = 0. Неравенство выполняется при b >0. Покажем теперь, что ни одно b ≤0 не удовлетворяет условиям задачи. Действительно, достаточно положить х = π /2, если а <0, и х = - π /2 при а ≥0.

Ответ. b> 0

§ 6. Показательные уравнения и неравенства

1. Уравнение h (x ) f ( x ) = h (x ) g ( x ) при h (x ) > 0 равносильно совокупности двух систем
и

2. В частном случае (h (x )= a ) уравнение а f (x ) = а g (x ) при а > 0, равносильно совокупности двух систем

и

3. Уравнение а f (x ) = b , где а > 0, a ≠1, b >0, равносильно уравнению

f (x )= log a b . Случай а =1 рассматриваем отдельно.

Решение простейших показательных неравенств основано на свойстве степени. Неравенство вида f (a x ) > 0 при помощи замены переменной t = a x сводится к решению системы неравенств
а затем к решению соответствующих простейших показательных неравенств.

При решении нестрого неравенства необходимо к множеству решений строгого неравенства присоединить корни соответствующего уравнения. Как и при решении уравнений во всех примерах, содержащих выражение а f (x ) , предполагаем а > 0. Случай а = 1 рассматриваем отдельно.

Пример 1 . При каких а уравнение 8 х =
имеет только положительные корни?

Решение. По свойству показательной функции с основанием, большим единицы, имеем х>0
8
х >1

>1

>0, откуда
a (1,5;4).

Ответ. a (1,5;4).

Пример 2. Решить неравенство a 2 ∙2 x > a

Решение . Рассмотрим три случая:

1. а< 0 . Так как левая часть неравенства положительна, а правая отрицательна, то неравенство выполняется для любых хR .

2. a =0. Решений нет.

3. а > 0 . a 2 ∙2 x > a
2 x >
x > - log 2 a

Ответ. хR при а > 0; решений нет при a =0; х (- log 2 a ; +) при а> 0 .

§ 7. Логарифмические уравнения и неравенства

Приведем некоторые эквивалентности, используемые при решении логарифмических уравнений и неравенств.

1. Уравнение log f (x ) g (x ) = log f (x ) h (x ) равносильно системе

В частности, если а >0, а ≠1, то

log a g (x)= log a h(x)

2. Уравнение log a g (x)=b
g (x)= a b ( а >0, a ≠ 1, g(x) >0).

3. Неравенство log f ( x ) g (x ) ≤ log f ( x ) h (x ) равносильно совокупности двух систем:
и

Если а, b – числа, а >0, а ≠1, то

log a f (x) ≤ b

log a f (x) > b

Пример 1. Решите уравнение

Решение . Найдем ОДЗ: х > 0, х ≠ а 4 , a > 0, а ≠ 1. Преобразуем уравнение

logх – 2 = 4 – log a x
logх + log a x – 6 = 0, откуда log a x = - 3

х = а -3 и log a x = 2
х = а 2 . Условие х = а 4
а – 3 = а 4 или а 2 = а 4 не выполняется на ОДЗ.

Ответ: х = а -3 , х = а 2 при а (0; 1)
(1; ).

Пример 2 . Найдите наибольшее значение а , при котором уравнение

2 log -
+ a = 0 имеет решения.

Решение. Выполним замену
= t и получим квадратное уравнение 2 t 2 – t + a = 0. Решая, найдем D = 1-8 a . Рассмотрим D ≥0, 1-8 а ≥0
а ≤.

При а = квадратное уравнение имеет корень t = >0.

Ответ. а =

Пример 3 . Решить неравенство log (x 2 – 2 x + a ) > - 3

Решение. Решим систему неравенств

Корни квадратных трехчленов х 1,2 = 1 ±
и х
3,4 = 1 ±
.

Критические значения параметра: а = 1 и а = 9.

Пусть Х 1 и Х 2 – множества решений первого и второго неравенств, тогда

Х 1
Х
2 = Х – решение исходного неравенства.

При 0< a <1 Х 1 = (- ;1 -
)
(1 +
; +), при
а > 1 Х 1 = (-;+).

При 0 < a < 9 Х 2 = (1 -
; 1 +
), при
а ≥9 Х 2 – решений нет.

Рассмотрим три случая:

1. 0< a ≤1 Х = (1 -
;1 -
)
(1 +
;1 +
).

2. 1 < a < 9 Х = (1 -
;1 +
).

3. a ≥ 9 Х – решений нет.

Задачи ЕГЭ

Высокий уровень С1, С2

Пример 1. Найдите все значения р , при которых уравнение

р ctg 2 x + 2sinx + p = 3 имеет хотя бы один корень.

Решение. Преобразуем уравнение

р ∙ (
- 1) + 2sinx + p = 3, sinx =t , t
, t 0.

- p + 2 t + p = 3, + 2 t = 3, 3 -2t = , 3t 2 – 2t 3 = p .

Пусть f (y ) = 3 t 2 – 2 t 3 . Найдем множество значений функции f (x ) на


. у
/ = 6 t – 6 t 2 , 6 t - 6 t 2 = 0, t 1 =0, t 2 = 1. f (-1) = 5, f (1) = 1.

При t
, E (f ) =
,

При t
, E (f ) =
, то есть при t


,
E (f ) =
.

Чтобы уравнение 3 t 2 – 2 t 3 = p (следовательно, и данное) имело хотя бы один корень необходимо и достаточно p E (f ), то есть p
.

Ответ.
.

Пример 2.

При каких значениях параметра а уравнение log
(4 x 2 – 4 a + a 2 +7) = 2 имеет ровно один корень?

Решение. Преобразуем уравнение в равносильное данному:

4x 2 – 4a + a 2 +7 = (х 2 + 2) 2 .

Отметим, что если некоторое число х является корнем полученного уравнения, то число – х также является корнем этого уравнения. По условию это не выполнимо, поэтому единственным корнем является число 0.

Найдем а .

4∙ 0 2 - 4a + a 2 +7 = (0 2 + 2) 2 ,

a 2 - 4a +7 = 4, a 2 - 4a +3 = 0, a 1 = 1, a 2 = 3.

Проверка.

1) a 1 = 1. Тогда уравнение имеет вид: log
(4 x 2 +4) =2. Решаем его

4x 2 + 4 = (х 2 + 2) 2 , 4x 2 + 4 = х 4 + 4x 2 + 4, х 4 = 0, х = 0 – единственный корень.

2) a 2 = 3. Уравнение имеет вид: log
(4 x 2 +4) =2
х = 0 – единственный корень.

Ответ. 1; 3

Высокий уровень С4, С5

Пример 3. Найдите все значения р, при которых уравнение

х 2 – (р + 3)х + 1= 0 имеет целые корни и эти корни являются решениями неравенства: х 3 – 7р х 2 + 2х 2 – 14 р х - 3х +21 р ≤ 0.

Решение. Пусть х 1, х 2 – целые корни уравнения х 2 – (р + 3)х + 1= 0. Тогда по формуле Виета справедливы равенства х 1 + х 2 = р + 3, х 1 ∙ х 2 = 1. Произведение двух целых чисел х 1 , х 2 может равняться единице только в двух случаях: х 1 = х 2 = 1 или х 1 = х 2 = - 1. Если х 1 = х 2 = 1, то р + 3 = 1+1 = 2
р = - 1; если х 1 = х 2 = - 1, то р + 3 = - 1 – 1 = - 2
р = - 5. Проверим являются ли корни уравнения х 2 – (р + 3)х + 1= 0 в описанных случаях решениями данного неравенства. Для случая р = - 1, х 1 = х 2 = 1 имеем

1 3 – 7 ∙ (- 1) ∙ 1 2 +2∙ 1 2 – 14 ∙ (- 1) ∙ 1 – 3 ∙ 1 + 21 ∙ (- 1) = 0 ≤ 0 – верно; для случая р = - 5, х 1 = х 2 = - 1 имеем (- 1) 3 – 7 ∙ (- 5) ∙ (-1) 2 + 2 ∙ (-1) 2 – 14 ∙ (-5) × (- 1) – 3 ∙ (- 1) + 21∙ (-5) = - 136 ≤ 0 – верно. Итак, условию задачи удовлетворяют только р = - 1 и р = - 5.

Ответ. р 1 = - 1 и р 2 = - 5.

Пример 4. Найдите все положительные значения параметра а , при которых число 1 принадлежит области определения функции

у = (а
- а
).

Похожие статьи